Synthesis and Spectroscopy of Acetato and Dithiocarbamate Complexes of Bis(cyclopentadienyl)zirconium(IV)

Hideo Suzuki, Toshio Takiguchi, and Yoshikane Kawasaki*

Department of Synthetic Chemistry, Faculty of Technology, Gunna University, Kiryu, Gunna 376
*Department of Petroleum Chemistry, Faculty of Engineering, Osaka University, Yamada-Kami, Suita, Osaka 565
(Received October 14, 1977)

Several acetato and dithiocarbamate complexes of bis(cyclopentadienyl)zirconium(IV), $Cp_2Zr(X)OAc$ (X=Me, Cl, OAc), $Cp_2Zr(X)dmtc$ (X=Me, Cl; $dmtc=S_2CNMe_2$), and $Cp_2Zr(X)detc$ (X=Me, Cl; $detc=S_2CNEt_2$) have been prepared. Infrared, ¹H NMR and mass spectra of these complexes suggest the chelation of acetato (except for one acetato group in $Cp_2Zr(OAc)_2$) and dithiocarbamate groups, affording 18-electron configuration of the zirconium atom. The infrared spectrum of diacetate bis(cyclopentadienyl)zirconium(IV) shows that one acetato group acts as bidentate ligand and the other as unidentate. Remarkable benzene- and hexafluorobenzene-induced shifts were observed in the ¹H NMR signal of methyl group attached to the zirconium atom and the dithiocarbamate group.

The structure and reactivity of bis(cyclopentadienyl)-zirconium(IV) complexes are of considerable interest in comparison with those of titanium analogs in view of the fact that the zirconium atom has larger ionic radius and smaller ionization potentials than the titanium atom.

Very few¹⁻³) 18-electron bis(cyclopentadienyl)zirco-

nium complexes
$$Cp_2Zr \stackrel{\nearrow}{\leftarrow} L$$
, which are thought to be a

reaction intermediate, have been reported. In these complexes the X, Y, and L groups take coplanar three coordinated configuration. Brainina et al.⁴⁾ reported the preparation of acetate chlorobis(cyclopentadienyl)zirconium(IV) but gave no spectral data. Wailes et al.⁵⁾ reported only ¹H NMR data of diacetate bis(cyclopentadienyl)zirconium(IV) in CDCl₃. Neither groups, however, made any suggestions for the structures.

This paper reports the preparation of several dithio-carbamate bis(cyclopentadienyl)zirconium(IV), with some spectroscopic discussion on their structures. No dithiocarbamate derivatives of bis(cyclopentadienyl)zirconium(IV) have been reported, except for monocyclopentadienylzirconium(IV) complex CpZr(S₂CNMe₂)₃.6) The preparation of some acetate bis(cyclopentadienyl)-zirconium(IV) is also reported.

Experimental

General. Preparation and recrystallization were carried out under argon or nitrogen atmosphere. Solvents were dried in the usual manner and distilled. Chlorobis-(cyclopentadienyl)(methyl)zirconium(IV) and thallium(I)dimethyl and diethyldithiocarbamate were prepared by the procedures reported.^{7,8)} Thallium(I) acetate and thallium(I) dithiocarbamates were used as a fine powder stored over P₂O₅. Infrared and mass spectra were recorded on a Hitachi 225 spectrophotometer and a JEOL model JMS-07 spectrometer, respectively. ¹H NMR spectra were recorded on a JEOL model JNM-PS-100 spectrometer operating at 100 MHz and a Varian A60-D spectrometer operating at 60 MHz. Chemical shifts were measured relative to tetramethylsilane as an internal standard. Melting points were measured in sealed capillary tubes and are uncorrected.

Preparation. Acetato Bis(cyclopentadienyl) (methyl) zirconium(IV) I: Thallium(I) acetate (0.58 g, 2.2 mmol) was gradually added to a solution of chlorobis(cyclopentadienyl) (methyl) zirconium(IV) (0.54 g, 2 mmol) in 50 ml

of dichloromethane and the mixture was stirred at room temperature for 4 h. The filtrate was evaporated in vacuo, and the yellow residue was recrystallized twice from benzene-hexane to give white crystals 1 (0.21 g, 35% yield). Am attempt to prepare 1 by the reaction of (Cp₂ZrMe)₂O⁹ with Ac₂O was unsuccessful, although Cp₂Zr(Cl)OAc was prepared⁴) by the treatment of (Cp₂ZrCl)₂O with Ac₂O.

Acetato Chlorobis(cyclopentadienyl)zirconium(IV) 2: Dichlorobis(cyclopentadienyl)zirconium(IV) (0.58 g, 2 mmol) was treated with thallium(I) acetate (0.58 g, 2.2 mmol) to give 2 (0.40 g, 64% yield) after recrystallization twice from dichloromethane—hexane.

Diacetate Bis(cyclopentadienyl) zirconium(IV) 3: Sodium acetate (0.36 g, 4.4 mmol) was added to a solution of dichloro bis(cyclopentadienyl)zirconium(IV) (0.58 g, 2 mmol) in 40 ml of benzene and the mixture was refluxed for 6 h with stirring. The yellow filtrate was evaporated in vacuo. The orange residue was recrystallized three times from benzene-hexane to give white crystals 3 (0.30 g, 45% yield).

Dimethyldithiocarbamate Bis(cyclopentadienyl)(methyl)zirconium-(IV) 4, Dimethyldithiocarbamate Chlorobis(cyclopentadienyl)zirconium(IV) 5, Diethyldithiocarbamate Bis(cyclopentadienyl)(methyl)zirconium(IV) 6, and Diethyldithiocarbamate Chlorobis-(cyclopentadienyl)zirconium(IV) 7: Complexes 4—7 were obtained as white crystals in 45(for 4)—85% (for 7) yield by the reaction of Cp₂ZrMeCl or Cp₂ZrCl₂ with thallium(I)dimethyl- or diethyldithiocarbamate in a similar way to

Table 1. Analytical data and melting points of $Cp_2Zr(X)Y$

	Complexes	Mp(°C)	Found (Calcd) %					
	Complexes		$\widehat{\mathbf{c}}$	H	N			
1	Cp ₂ Zr(Me)OAc	92—94	52.29 (52.84)	5.45 (5.35)				
2	$\mathrm{Cp_{2}Zr}(\mathrm{Cl})\mathrm{OAc}$	137—138	45.06 (45.62)	4.04 (4.15)				
3	$\mathrm{Cp_2Zr}(\mathrm{OAc})_2$	100—101	49.65 (49.53)	4.62 (4.75)				
4	$Cp_2Zr(Me)dmtc^{a)}$	156—158	46.93 (47.15)	5.35 (5.37)	4.01 (3.93)			
5	$\mathrm{Cp_2Zr}(\mathrm{Cl})\mathrm{dmtc^{a)}}$	208 dec	41.22 (41.41)	4.22 (4.28)	$3.65 \\ (3.71)$			
6	$Cp_{2}Zr(Me)detc^{b)}$	131—132	50.80 (51.01)	5.96 (6.15)	$3.23 \\ (3.72)$			
7	$Cp_{2}Zr(Cl)detc^{\rm b)}$	186 dec	44.05 (44.47)	4.95 (4.98)	3.43 (3.46)			
-\ J CONMa b\ Jota CONEt								

a) $dmtc = S_2CNMe_2$. b) $detc = S_2CNEt_2$.

that for 1 and 2.

Results and Discussion

Acetato Derivatives (1—3). In the monoacetato complexes 1 and 2, $v_{\rm as}({\rm OCO})$ and $\Delta(v_{\rm as}-v_{\rm s})$ values (Table 2) suggest that the acetato group belongs to the category of the chelating structure¹⁰⁾ in the solid state. On the other hand, in the diacetate derivative 3 one acetato group acts as the bidentate ligand and the other as unidentate in the solid state. Bridging and ionic structures of the acetate groups are excluded on the basis of molecular weight measurements and negligible molar conductivities (Table 3). In mass spectra of these complexes no ion heavier than the parent ion or the (M-Me)+ ion was detected (Table 4). The results suggest the following structures I and II for complexes 1—3 in the solid state. The IR spectra of 1 and 2 in

CH₂Cl₂, however, give additional weak bands at *ca*. 1640 and 1300 cm⁻¹. The results indicate that there is some portion of III in equilibrium with I in CH₂Cl₂.

$$\begin{array}{cccc}
Cp & X & & & Cp & X \\
Cp & Zr & O & & & Cp & Zr & O \\
Cp & & & & & Cp & Zr & O \\
\end{array}$$
(II) (III)

The structure of **3** is of interest as compared with that of analogous titanium(IV) complex $Cp_2Ti(OAc)_2$.¹¹⁾ In the latter both acetate groups are unidentate, although the bidentate acetate group was reported for Cp_2Ti^{11} -OAc.¹²⁾ The difference in structure of these diacetate complexes might be mainly due to the difference in their ionic radii (Ti(IV) 0.62—0.65 Å, Zr(IV) 0.79—0.87 Å). In the ¹H NMR spectrum of **3** methyl signals of the two acetate groups were observed as a singlet resonance even at —91 °C in CH_2Cl_2 . The IR spectrum of **3** in CH_2Cl_2 shows little difference from that in the solid state. The IR and ¹H NMR data suggest that there is a rapid interconversion process IIa—IIb between two acetate groups in CH_2Cl_2 .

$$\begin{array}{c}
Cp & C-Me \\
Cp & C-Me
\end{array}$$

$$\begin{array}{c}
Cp & C-Me \\
Cp & C-Me
\end{array}$$

$$\begin{array}{c}
Cp & C-Me \\
Cp & C-Me
\end{array}$$

$$\begin{array}{c}
Cp & C-Me
\end{array}$$

$$\begin{array}{c}
C-Me
\end{array}$$

$$\begin{array}{c}
C & C-Me
\end{array}$$

$$\begin{array}{c}
C & C-Me
\end{array}$$

$$\begin{array}{c}
C & C-Me
\end{array}$$

Dithiocarbamate Derivatives (4-7). IR spectra: The ν C=N frequency of complexes 4-7 together with that of methyl dialkyldithiocarbamate, tetraalkylthiuram disul-

TABLE 2. IR DATA^{a)} FOR THE COMPLEXES (IN cm⁻¹)

Complexes	v(OCO)	$\nu_{\rm s}({\rm OCO})^{\rm b)}$	/(c)	ν Zr–Me
1	1533	1467	- 66	440
2	1535	1465	70	
3	1642 1540	1305 1480	337 60	

Complexes	$\nu C=N^{d}$	$\nu Zr-S$	vZr–Me
4	1512	358 355	425
5	1523	367	_
6	1495	360	423
7	1500	366	

a) Nujol mulls. b) Hexachlorobutadiene mulls. c) $\Delta = \nu_{as}(OCO) - \nu_{s}(OCO)$. d) Reported ν C=N values in unidentate dithiocarbamate compounds. Me₂NCS₂Me¹³) 1498; (Me₂NCS₂)₂¹⁴ 1505; Me₂NCS₂Na · H₂O¹⁵) 1480; Et₂NCS₂-Me¹³) 1489; (Et₂NCS₂)₂¹⁶) 1487; Et₂NCS₂Na · xH₂O 1475.

Table 3. Mol wt and molar conductivities of Cp₂Zr(X)OAc

Complexes	Mol wta)	(Calcd)	Molar conductivity ^{b)} (×10 ⁻³ M concn)		
1	330	(295)	0.032 (1.03)		
2	325	(316)	0.020 (1.02)		
3	360	(340)	0.074 (0.59)		

a) Determined cryoscopically in C₆H₆.

b) Ω⁻¹ cm² mol⁻¹ in CH₂Cl₂ at 25 °C.

Table 4. Mass spectral data^{a)} for $Cp_2Zr(X)Y$

Com- Temp plexes °C		m/e (intensity) assignment				
1	100	279(100) [M-Me]+, 43(10)MeC+=O				
2	150	314(13)M+, 279(15) [M-Cl]+, 249 (100) [M-Cp]+, 43(19)MeC+=O				
3	100	$273(100) [M-Cp]^+, 43(33) MeC^+=O$				
4	150	$340(100) [M-Me]^+, 88(7)Me_2NC^+=S$				
5	200	$375(6)M^+$, $340(22) [M-Cl]^+$, 310 (100) $[M-Cp]^+$, $88(15)Me_2NC^+=S$				
6	130	$368(100) [M-Me]^+, 116(17)Et_2NC^+=S$				
7	150	403(5)M+, 368(2) [M-Cl]+, 338(100) [M-Cp]+, 116(2)Et ₂ NC+=S				

a) Ionizing voltage: 30 eV.

fide, and sodium dialkyldithiocarbamate is summarized in Table 2. The IR spectra of complexes $\mathbf{4}$ — $\mathbf{7}$ in $\mathrm{CH_2Cl_2}$ show little difference from those in the solid state. Complexes $\mathbf{4}$ — $\mathbf{7}$ exhibited the $v\mathrm{C=N}$ band at higher frequency than the corresponding unidentate dithiocarbamate compounds containing the same N,N-dialkyl group. The frequency of this band of $\mathbf{4}$ — $\mathbf{7}$ is nearly the same as that of $\mathrm{CpZr}(\mathrm{S_2CNR_2})_3$, 6,17) in which chelation of the dithiocarbamate groups has been demonstrated by X-ray crystal analysis. $^{6)}$ Thus the higher $v\mathrm{C=N}$ values suggest the chelation of dithiocarbamate groups in the complexes.

¹H NMR Spectra and the Structures: One sharp N-Me proton signal was observed at 23 °C in CH₂Cl₂ in complexes **4** and **5**, the latter showing two N-Me proton signals under 0 °C. One kind of sharp N-CH₂ and two

Table 5. ¹H NMR data²) for complexes in CH₂Cl₂, C₆D₆, and C₆F₆

 $(Zr) = Cp_2Zr$

		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						-P2-3
Complexes		es Assignment $\mathrm{CH_2Cl_2}^{\mathrm{b)}}$		$C_6D_6^{b)}$ $C_6F_6^{c)}$	Δ^{d}	⊿ *•)		
1	(Zr)OAc Me	Ср	5.92	5.73	5.85	+0.19	-0.07	
		C–Me	1.80	1.61	1.80	+0.19	+0.00	
		Zr- Me	0.00	0.43	-0.35	-0.43	+0.35	
2	(Zr)OAc Cl	$\mathbf{C}\mathbf{p}$	6.20	5.86		+0.34		
		C–Me	1.96	1.61		+0.35		
3	(Zr)OAc OAc	$\mathbf{C}\mathbf{p}$	6.23	5.98		+0.25		
		C–Me	2.00	1.82		+0.18		
4	(Zr)dmtc Me	$\mathbf{C}\mathbf{p}$	5.79	5.73	5.65	+0.06	+0.14	
		N-Me	3.25^{f}	2.69	3.40	+0.53	-0.15	
		Zr-Me	-0.06	0.47	-0.43	-0.53	+0.37	
5	(Zr)dmtc Cl	$\mathbf{C}\mathbf{p}$	6.09	5.96		+0.13		
		N-Me	3.30^{g}	2.58		+0.72		
6	(Zr)detc Me	$\mathbf{C}_{\mathbf{p}}$	5.88	5.72	5.70	+0.16	+0.18	
		$N-CH_2$	3.72(q)	$3.38(q) \ 3.36(q)$	3.92(q)	+0.35	-0.20	
		С–Ме	$\frac{1.19(t)^{h}}{1.21(t)^{h}}$	$0.89(t) \\ 0.86(t)$	1.40(t)	+0.33	-0.20	
		Zr-Me	-0.06	0.47	-0.43	-0.53	+0.37	
7	(Zr)detc Cl	$\mathbf{C}_{\mathbf{p}}$	6.07	6.00		+0.07		
		$N-CH_2$	3.75(q)	3.37(q)		+0.38		
		С–Ме	$\frac{1.26(t)^{h}}{1.24(t)^{h}}$	0.86(t)		-0.39		
	$(Zr)Me_2^{i)}$	$\mathbf{C}\mathbf{p}$	6.08	5.80	6.05	+0.28	+0.03	
	, , <u>-</u>	Zr– Me	-0.40	-0.14	-0.57	-0.26	-0.17	
	(Zr)MeCl	$\mathbf{C}_{\mathbf{p}}$	6.22	5.73		+0.49		
	• •	Zr–Me	0.28	0.32		-0.04		
	$(Zr)Cl_2$	$\mathbf{C}_{\mathbf{p}}$	6.68	5.83		+0.85		

a) δ value (ppm); (q) quartet; (t) triplet; other, sharp singlet except as noted. b) Recorded on a JEOL model JNM-PS-100 spectrometer at 23 °C operating at 100 MHz. c) Recorded on a Varian A-60-D spectrometer at 40 °C operating at 60 MHz. d) $\Delta = \delta (CH_2Cl_2) - \delta (C_6D_6)$. e) $\Delta^* = \delta (CH_2Cl_2) - \delta (C_6F_6)$. f) Singlet even at -97 °C. g) Coalesces to doublet at 0 °C. h) Coalesces to triplet at about 34 °C. i) Ref. 7.

sorts of sharp C-Me proton signals were observed at 23 °C in complexes 6 and 7. The C-Me proton signals coalesced at 34 °C. On the other hand, very broad N-Me and N-CH₂ proton signals were observed in Me₂NCS₂Me and Et₂NCS₂Me at 23 °C in CH₂Cl₂, due to the high rotational barrier around the S₂C=N bond. The chemical shifts of N-alkyl protons of complexes 4—7 are nearly the same as those of CpZr(S₂CNR₂)₃. The IR and ¹H NMR data suggest that these dithiocarbamate groups complexes 4—7 are chelating in the solid state and in CH₂Cl₂. The two N-alkyl protons might be magnetically equivalent by the following equilibration IVa—IVc over —97 °C in 4, 0 °C in 5, and 34 °C in 6 and 7.

Chemical Shifts of Cp Proton, and Solvent-induced Shifts. Table 5 shows 1H NMR data for complexes 1-7 in CH_2Cl_2 , C_6D_6 , and C_6F_6 together with those for Cp_2Zr-Me_2 , $Cp_2Zr(Me)Cl$, Cp_2ZrCl_2 . In a series of $Cp_2Zr(X)-OAc$ the order of high field shifts of Cp proton in CH_2Cl_2 is X=Me>Cl>OAc (unidentate). Similarly in Cp_2Zr-Me

(X)Me the order is X=dmtc>detc>OAc(chelating)>Me>Cl, and in Cp₂Zr(X)Cl it is X=detc≥dmtc>OAc-(chelating)>Me>Cl. Thus the overall order of high field shifts of the Cp proton in CH₂Cl₂ is as follows: dmtc>detc>OAc(chelating)>Me>Cl>OAc(unidentate). The signals of Cp proton in bis(cyclopentadienyl)zirconium(IV) complexes in CDCl₃ shift in general to high field in line with electron donating effect of ligands on the zirconium atom. 18) The order is in line with that of electron donating ability of ligands. Remarkably low field shifts for (Zr)-CH₃ proton signals and high field shifts for N-CH₃ proton signals in dithiocarbamate groups were observed in benzene (Tables 5). The specific benzene-induced solvent shifts are interpreted by the following benzene-solute stereospecific interac-Benzene-dithiocarbamate interaction has been

reported by Hatton and Richards^{19–20)} and Honda et $al.^{21-22)}$ Hexafluorobenzene^{23–24)} induces low field shifts of protons at the electron-deficient site in a solute molecule and high field shifts of protons at the electron-rich site, the direction of these shifts being reversed in ben-

zene. In our zirconium complexes appreciable hexafluorobenzene induced shifts were also observed in (Zr)– CH₃, N–CH₃, and N–CH₂CH₃ proton signals.

One of us (H. S) is grateful to Prof. Rokuro Okawara, Dr. Masanori Wada and Dr. Hideo Kurosawa, Osaka University, for their encouragement and valuable discussions.

References

- 1) G. Fachinetti, C. Floriani, F. Marchetti, and S. Merlino, J. Chem. Soc., Chem. Commum., 1976, 522.
- 2) E. M. Brainina, E. V. Bryukhova, B. V. Lokshin, and N. S. Alimov, *Izv. Akad. Nauk SSSR*, Ser. Khim, 1973, 891.
- 3) H. A. Martin, P. J. Lemaire, and F. Jellinek, J. Organomet. Chem., 14, 149 (1968).
- 4) E. M. Brainina, M. Kh, Minacheva, B. V. Lokhin, E. I. Fedin, and P. V. Petrovskii, *Izv. Akad. Nauk SSSR*, Ser. Khim, 1969, 2492.
- 5) P. C. Wailes, H. Weigold, and A. P. Bell, *J. Organomet. Chem.*, **33**, 181 (1971).
- 6) A. H. Bruder, R. C. Fay, D. F. Lewis, and A. A. Sayler, *J. Am. Chem. Soc.*, **98**, 6932 (1976). IR(Nujol) 1510 (ν C=N), and 350 cm⁻¹ (ν Zr-S); NMR (CDCl₃) δ =6.13(Cp), 3.36, 3.35, 3.30, and 3.29 (N-Me).
- 7) P. C. Wailes, H. Weigold, and A. P. Bell, *J. Organomet. Chem.*, **34**, 155 (1972).
 - 8) S. Akerstorm, Arkiv. Kemi., 24, 495 (1965).
- 9) This compound was obtained in 65% yield as shiny white crystals by the reaction of Cp_2ZrMe_2 with MeOH in CH_2Cl_2 , and recrystallization from CH_2Cl_2 -hexane. (Cp_2 - $ZrMe)_2O$: mp 160 °C (dec); IR(Nujol) 745 (ν Zr-O-Zr) and 450 cm⁻¹ (ν Zr-Me); NMR(C_6D_6) δ =5.93 (10H, s, Cp) and 0.24 (3H, s, Me); MS(150 °C, 75 eV), m/e (rel intensity), 486 (100, M-Me); Found: C, 53.75; H, 5.51%. Calcd for $C_{22}H_{26}OZr_2$: C, 54.05; H, 5.36%.

- 10) N. W. Alcock, V. M. Tracy, and T. C. Waddington, J. Chem. Soc., Dalton Trans., 1976, 2243.
- 11) G. G. Dvoryantseva, Yu. N. Sheinker, A. N. Nesmeyanov, D. V. Nogina, N. A. Lazareva, and V. A. Dubovitskii, *Dokl. Akad. Nauk SSSR.*, **161**, 603 (1965).
- 12) R. S. P. Coutts and P. C. Wailes, Aust. J. Chem., 20, 1579 (1967).
- 13) C. E. Holloway and M. H. Gitlitz, Can. J. Chem., 45, 2659 (1967).
- 14) F. A. Cotton and J. A. McCleverty, *Inorg. Chem.*, **3**, 1398 (1964).
- 15) C. ÓConnor, J. D. Gilbert, and G. Wilkinson, *J. Chem. Soc.*, *A*, **1969**, 84.
- 16) N. K. Wilson, J. Phys. Chem., 75, 1067 (1971).
- 17) This compound was obtained as white crystals by the treatment of Cp₂ZrCl₂ with NaS₂CNEt₂ in CH₂Cl₂ at r. t. CpZr(S₂CNEt₂)₃: mp 185—186 °C; IR (Nujol) 1493 (ν C=N), 371 and 362 cm⁻¹ (ν Zr-S); NMR (CDCl₃) δ =6.08 (5H, s, Cp), 3.76 (12H, m, 10 lines, N-CH₂) and 1.24 (18H, m, 6 lines, C-Me); Found: C, 39.80; H, 5.86; N, 6.99%. Calcd for C₂₀H₂₇N₂S₂Zr: C, 39.96; H, 5.87; N, 6.99%.
- Calcd for C₂₀H₃₅N₃S₆Zr: C, 39.96; H, 5.87; N, 6.99%. 18) P. C. Wailes, "Organometallic Chemistry of Titanium, Zirconium and Hafnium," Academic Press (1974), p. 115.
- 19) J. V. Hatton and R. E. Richards, *Mol. Phys.*, **3**, 253 (1960).
- 20) J. V. Hatton and R. E. Richards, *Mol. Phys.*, **5**, 139 (1962).
- 21) M. Honda, M. Komura, Y. Kawasaki, T. Tanaka, and R. Okawara, J. Inorg. Nucl. Chem., 30, 323 (1968).
- 22) M. Honda, Y. Kawasaki, and T. Tanaka, Tetrahedron Lett., 1967, 3313.
- 23) R. D. Bertrand, R. D. Compton, and J. G. Verkade, J. Am. Chem. Soc., **92**, 2702 (1970).
- 24) R. S. Armstrong, M. J. Aroney, R. K. Duffin, H. J. Stootman, and R. J. W. Le Fevre, *J. Chem. Soc.*, *Perkin Trans.* 2, 1973, 1362.